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For wings with supersonic edges and with arbitrary dihedral, twist, camber and 
thickness distribution, the pressure distribution on the wing exterior to and along 
the two Mach lines emanating from the vertex of the wing is equal to  the corre- 
sponding pressure distribution for a planar wing. The problem is to find the 
pressure distribution inside the two Mach lines. In  the present paper, the unknown 
pressure distribution is approximated by an elementary function of the two 
surface variables. The (as yet undetermined) constants in the function are then 
found by the conditions: (i) that the function takes on the corresponding planar 
values along the two Mach lines, (ii) that it  fulfils certain generalized integral 
relationships (Ting 1959), and (iii) that it satisfies the averaging property of 
solutions of the wave equation to be developed in this paper. The generalized 
integral relationship relates the integral of the pressure distribution along the line 
of intersection of a Mach plane with the wing to the integral along the same line 
of the prescribed normal velocity. The averaging property relates the pressure 
distribution along the line of intersection of the surface of the dihedral wing to 
that on a planar wing. 

1. Introduction 
The problem of linearized supersonic flow over thin wings with an arbitrary 

dihedral can be solved if the flow field can be resolved into conical fields (Snow 
1948; Germain 1955). On the other hand, if the normal velocity on the wing 
surface is arbitrary while the dihedral angle is equal to go", the problem can be 
treated by the method of images (Ting 1957). 

In  general, the problem of supersonic flow over thin wings with supersonic 
edges, arbitrary dihedral, and with arbitrary twist, camber and thickness dis- 
tribution, has been solved from a mathematical point of view. However, the 
numerical evaluation of the solutions is extremely difficult. Moreover, the prob- 
lem of wings with dihedral is the essence of the interference problem associated 
with wings and prismatic bodies. Recent studies by Ferri (1955, p. 353), Ferri & 
Clark (1957), and Ferri, Clarke & Ting (1957) on the effect of body contouring for 
drag reduction at constant lift have increased the interest in solutions of wing- 
body interference problems and in the determination of the pressure distribution 
on dihedral wings. 

This paper begins with the derivation of an averaging property of solutions 
of the wave equation. The integral relationship derived by Ting (1959) as a 
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generalization of the results of Lagerstrom & Van Dyke (1949), Bleviss (1953), 
Ferri (1955) and Ferri et al. (1957) is then restated and applied to dihedral 
problems. 

When the flow field is homogeneous, as defined in $4, the procedure for 
obtaining the approximate pressure distribution on the wing is outlined. 
Numerical examples are provided for flows whose potentials are homogeneous of 
order 1 and 2. The former is identical to conical flow, and the corresponding 
solution is in good agreement with the exact solution of the linearized conical 
problem. 

When the flow field cannot be resolved into a finite number of homogeneous 
flow fields, a more extended procedure for obtaining the pressure distribution is 
required; this is outlined and illustrated by an example. 

2. Averaging property of solutions of the wave equation 
This can be described clearly by referring to the following specific physical 

problem. For supersonic flow over dihedral wings with prescribed normal velocity 
on the two planes of the wing, the product of the dihedral angle and the pressure 
along the line of intersection of the planes is independent of the dihedral angle, 
and is therefore equal to T times the corresponding pressure distribution for the 
planar wing. 

The mathematical formulation and the proof of this statement are given as 
follows: 

Let @’ be the solution of the wave equation 

which fulfils the initial conditions 

$” = 0 and & = 0 at t = 0, (2) 

and satisfies the boundary conditions for the normal derivative of $”, namely 

on the s-t plane defined by the parametric equations, z = s cos v and y = s sin v, 
where s > 0 and t > 0 (cf. figure 1). 

The superscript (v) of $” is associated with the angle between the t-z plane and 
the s-t plane. Then, for different values of v, the corresponding solutions on the 
line of intersection of the boundary planes obey the following relationship: 

Y @ ( O , O ,  t )  = n$5”(0,0, t ) .  (5) 

Equation ( 5 )  can be proved by virtue of Green’s Theorem (see Ward 1955, 
p. 55) ,  which states 

IjlqP(y,z,t)Q.ndA- (P.n)(l/R)dA = 0, (6) 
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where (*) means ‘the finite part of ’, and 

R = [ ( t 1 - t )2 -z2 - -y2 ]~ ,  

i ,  j, k are the unit vectors along the t ,  y and z axes respectively, and n is the unit 
outward normal vector to the closed surface of integration A .  The surface A con- 
sists of (see figure 1): 

(i) A*, which is the part of the surface R = 0 lying in between the planes 
t = 0, t = t ,  - 6 and the boundary planes. 

(ii) I, which is the part of the plane t = 0, lying inside A*. 
(iii) 11, which is the part of the plane t = t, - 6, lying inside A*. 
(iv) B,, which is the part of the t-z plane, lying inside A* and between planes 

(v) B,, which is the part of the t-s plane, lying inside A* and between planes 
t = Oandt = t,-S. 

t = 0 and t = tl-S. 

7” 

/ I  

FIGURE 1. Averaging property with boundary data. 

As 6 --f 0, the finite part of the first integral over I1 approaches v@(O, 0, tl) and 
the second integral over I1 approaches zero and that of both integrals over A* 
vanishes (see Ward 1955). 

Due to the initial conditions, the boundary conditions, and the vanishing of 
Q . n on the t - x  and t-s planes, equation (6) becomes: 

The terms on the right-hand side of equation ( 7 )  are independent of v, and 
therefore v@ is independent of v and equation (5) is valid. 

This property is formulated with homogeneous initial conditions and non- 
homogeneous boundary conditions. It will be called the averaging property 
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associated with boundary data in order to differentiate from the averaging 
property associated with initial data (Ting 1958). The application of the second 
averaging property can be found in diffraction problems and in the interference 
problem of a wing and prismatic body. 

3. The generalized integral relationship 
In  this section the requirement for and statement of the generalized integral 

relationship given by Ting (1959) are restated. As shown in figure 2, a cylindrical 
surface y = F(z),  is placed in a supersonic stream directed along the x-axis, with 
velocity U and Mach number M .  qn[x, F(z) ,  z ]  represents the prescribed normal 
velocity on the cylindrical surface with 

and 

qnlu 1 ( 8 )  

p,[x,P(z),z] = 0 for x < 0. (9) 

FIGURE 2. The generalized integral relationship. 

It will be assumed that qn[x, P(z),  z] is piece-wise continuous and that for any 
given Mach plane, x +By = Mb,  there exist two numbers K,(P) and K2(/3) (with 
K ,  > K 2 )  such that on the Mach plane, the disturbance potential 4, due to qn, is 
confined inside the region Kl > z > Kz. That is, 

4(x,  974 = 0 

for x G M B - B y ,  m > z >, K,(P) and R2(P) 3 z > -m. (10) 

The integral of the disturbance pressure along the curve of intersection, Lo, of 
the cylindrical surface y = P(z) with the Mach plane x +By = M b  is related to the 
integral of the prescribed normal velocity qn[x, F(z),  z ]  as follows: 

20 Fluid Mech. 6 
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where n is the unit vector normal to the cylindrical surface, j is the unit vector 
parallel to y-axis, and g represents the angle between the x-axis and the tangent 
to the path of integration. 

The integral relationship still holds if the cylindrical surface is rotated about its 
generatrix, the x-axis, with respect to the co-ordinate axes and the Mach plane. 
Consequently, if the co-ordinate axes are fixed with respect to the cylindrical 
surface while the Mach plane is rotated about the x-axis, the integral relationship 
remains valid and equation (1 1) becomes 

SLpsinon.wdL = - q,sinadL, ”B” jLL 
where L refers to the line of intersection of the cylindrical surface with the Mach 
plane defined by x+B(ycosw+zsinw) = M p  = xo (13) 

and w = jcosw+ksinw. 

The Mach plane, which is intercepted by the x-axis at the Mach angle, is 
specified by two parameters, the x intercept xo and .the angle of rotation w .  
For each value of xo and w ,  equation (12) gives a linear relationship between 
the pressure distribution and the normal velocity. It should be noted that for 
the derivation of the integral relationship the assumption of equation (1 0) has 
been made. For the fulfilment of equation (lo),  there exist certain restrictions 
on the values of two parameters, xo and w ,  and a rule for selecting the suitable 
cylindrical surface. 

For dihedral wings with supersonic edges, it  is sufficient to discuss only the 
upper surface for the case where the normal velocity on one of the dihedral planes, 
y-ztanv = 0, vanishes. On the other plane, y = 0, the normal velocity 
q5u = g(z, z > 0) is prescribed and vanishes for the region x < 0. 

To apply the integral relationship, it  is clear that the intercept xo should 
not be outside the wing surface. The value of w should obey the restriction, 

For w > 0, the wing surface can be chosen as the cylindrical surface and 
the condition of equation (10) is fulfilled with K ,  = MP/(Bsinw) and 
K ,  = - M,4/[B( 1 - sin w ) ] .  

For w < 0, the Mach plane will not intercept the positive z-axis. In  order to 
fulfil the condition of equation (10) a modified cylindrical surface should be used. 
It may be composed of (see figure 3): (1) the portion of the wing surfaces where 
z < K’, (2) the portion of the plane z = K’, where 0 < y < K’, and (3) the portion 
of the plane y = K‘, where z > K’. Here K’ is the z-co-ordinate of the point where 
the Mach plane intercepts the forward Mach line in the x-z plane issuing from 
the vertex. 

On the portion of the plane y = I<‘, where z > k” and which is ahead of the 
Mach plane, the flow field is undisturbed; therefore, K’ can be chosen as the value 
for K,(,8) in equation (10). The path of integration L with non-zero integrand will 
then consist of two parts: (1) the segments of straight lines on the surface of the 
wing inside the domain of influence of the vertex, and (2) the segment of straight 
line on the plane z = K‘ which is outside of the domain of influence of the vertex. 

Q7r-v > w > -in. 
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On the second segment the pressure distribution and the normal velocity can 
be obtained from the planar solutions; therefore, the integral relationship along 
the path L does not involve any unknown function other than the pressure 
distribution on the wing surface. This is the rule to be observed in selecting the 
proper cylindrical surface. 

FIGURE 3. Integral relationship for dihedral wings-when the Mach plane 
does not intercept the positive z-axis. 

4. Homogeneous flow 

the other plane y = 0, the prescribed normal velocity is now expressed as 
It is sufficient t o  discuss the case qn = 0 on the dihedral plane y = z tan 1'. On 

v (x > 0, 0, z > 0)  = xmzn, (14) 

where m and n are real numbers. The flow field is a homogeneous flow of the 
(m + rt + 1)th order (see Germain 1955) for which an analytic solution other than 
the conical solution (homogeneous flow of order 1) is not yet available. However, 
the method of the present paper can be readily applied regardless of the order. 

The pressure distribution on the wing surface inside the domain of influence of 
the vertex can be expressed in general as 

and 

where 

If the functions fi and fi are approximated by second-order polynomials, i.e. 
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there are altogether six unknown constants aoj, alj and a,j, where j = 1 , Z .  The 
condition along the Mach lines emanating from the vertex yields the values of 
fl( 1) andfi( l), while the averaging property yieldsfl(0) andfi(0). The remaining 
two linear equations for the six unknowns are furnished by the integral relation- 
ship corresponding to two different values of o. It is evident that the integral 
relationship is independent of the x-intercept, x,, of the Mach plane. 

For the homogeneous flow of order 1 (m = n = 0 ) ,  the constants are determined 
for v = 135" and the pressure distribution is plotted in figure 4. The deviation 
from the exact solution of the linearized conical problem is within 10 %. 

Bzlx - I 
0 

FIGURE 4. Homogeneous flow field of order 1. __ , exact linearized conical solution ; 
+, approximate solution of equation (17); v, approximate solution of equation (16). 

With the knowledge that the expression for the pressure distribution contains 
a term like J( 1 - 7:) near the Mach lines, it is, therefore, desirable to admit such 
a term in the approximate expressions offj(yj); e.g. 

The six unknown constants aoj, aIj  and bj are again determined for the homo- 
geneous solution of order 1, and the corresponding pressure distribution is in good 
agreement with the exact linearized conical solution (figure 4). 

fj(7j) = aoj f"lj7j + b j J ( 1  - 75). (17) 
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A calculation has been made by Ting (1958) to determine the eight constants 
when the term bj J( 1 - 77) is added to the right-hand side of equation (16). The 
pressure distribution is then in perfect agreement with the exact conical solution. 

Figure 5 shows the pressure distribution on the wing for a homogeneous flow of 
order 2 with m = 0 and n = 1. The approximate solution in the form of equa- 
tion (1 7) differs slightly from that of equation (1 6). 

Y 

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 
t B x  J z  +Bs f z  

FIGURE 5. Homogeneous flow field of order 2. -, approximate solution of 
equation (17) ; 0, approximate solution of equation (16). 

5. An example of a non-homogeneous flow field 
In  principle, the prescribed normal velocity on the wing surface can be expressed 

as a double power series of x and z. Consequently, the pressure distribution will be 

where pr,t,n can be obtained by the procedure outlined in the preceding section. 
From the engineering point of view, this is not a practical solution if the series 

of equation (18) does not converge fast enough. For such cases, a different 
procedure of solution is necessary; this can be best illustrated by an example. 

Figure 6 shows a dihedral wing with q5n = 0 on the plane y = z tan v. On the 
plane y = 0, the normal velocity is 

q51/=0 for O < z < a  or x < O ,  

q 5 y = ~ U  for z > a  and x >  0. 

This problem is chosen because it exhibits the basic character of diffraction 
problems and also that of interference problems of wings with prismatic bodies. 
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For x < aB, the disturbance pressure is identical with the planar solution. At 
x = aB, the 'incident disturbance'p(") which originates at the point x = 0, y = 0, 
z = a reaches the x-axis. For x > aB, the incident disturbance is diffracted and/or 
reflected by the x-s plane (y = s sin v, z = s cos v). The disturbance due to the 
corner is confined inside the forward Mach lines x - Ba = Bz in the plane y = 0 
and 2 - Ba = Bs in the x-s plane. 

FIGURE 6. An example for a non-homogeneous flow field. 

For the case where v < n, the incident disturbawe is simply reflected by the 
x-s plane in the region upstream of the Mach line x-Ba = Bs and behind the 
hyperbola x = B J(sz - 2a s cos v + a"). I n  this region, the resultant pressure 
should be 2p(n) (x, y = s sin v, z = s cos v). The pressure distribution in the domain 
of disturbance of the corner can be written as 

p(x>  0 ,d  = p'"'(x, 0,z)  +Pl(% 4, 
p(x ,  s sin v, s cos v) = 2p(")(x, s sin v, s cos v) +pz(S, s), ( 2 0 b ) t  

where Z = x - Ba, and p l  and pz denote the deviations'from the planar pressure 
distribution. 

The conditions for p 1  and pz along the Mach lines are 

and 

The averaging property yields 

and p,(E,O) = - - 2  ")E+Ba,O,O). 
) p (  ( 

t The term 2p(n) should be omitted from equation (20b)  for the case where v > 7r. 
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The unknown functions, p, and p,, will be approximated by the following 
functions of two variables: 

In  the approximating functions, a total of twelve unknown constants have 
been admitted. Eight equations are obtained from equations (21) and (22 )  for 
Z = 0.5Ba and Ba, respectively, since in the present problem the length of the 
chord has been chosen to be 2Ba .  The integral relationship yields four equations 
corresponding to the Mach planes (xo, w )  with x,, = Ba, xo = O.5Bcc and w = go", 
w = 45", respectively, for the case of v = 135". The numerical results are shown in 
figure 6. 

p ,  is expressed in a series of [Z/(aB)]t ,  [Z/(aB)]%, . . . in equation ( 2 3 )  due to 
the fact that p(")(Z+ aB, 0,O) can be expressed by a similar series at  least for 
small values of Z/(aB). However, if a regular power series is employed, the result 
of the approximation does not differ much from that of equation ( 2 3 ) .  

For the purpose of improving the approximation, additional terms may be 
admitted. If terms involving higher powers of Z/(aB) are added to equation ( 2 3 ) ,  
extra vaIues of xo should be selected so that there will be additional integral 
relationships corresponding to the Mach plane ( x o , w ) .  On the other hand, if 
additional terms involving 7 are admitted, the additional equations are obtained 
by taking more values of w. 

6. Concluding remarks 
The averaging property of solutions of the wave equation and the generalized 

integral relationship are applied to obtain the pressure distribution on dihedral 
wings if the normal velocity on the dihedral planes is prescribed. 

Since the integral relationship gives a linear relationship between the integral 
of pressure and the integral of normal velocity, it  is plausible to apply the integral 
relationship to solve the problem when the boundary conditions on the dihedral 
planes are of the mixed type. Consequently, it  is feasible to extend the method 
in the present paper to solve the problem of dihedral wings with subsonic edges. 

As a further extension of the work reported here, the problem wherein the 
boundary is a cylindrical surface may be cited. In  this case it is necessary to 
obtain the pressure distribution based on the integral relationship alone. The 
feasibility of so obtaining the pressure distribution was demonstrated for the 
problem of conical flow on dihedral wings by Ting (1958). With the averaging 
condition replaced by an additional integral relationship, the approximate 
pressure distribution on the wing surface differs from that of the exact linearized 
conical solution by 2 %. Attempts are in progress to obtain, from the integral 
relationship alone, the pressure distribution on a cylindrical surface with its 
generator parallel to the direction of flow and with a prescribed normal velocity. 
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Force Office of Scientific Research and Development Command, under Contract 
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